


Existing and future challenges/threats

o water resources
--Rural subdivision development
--Avallability of water for competing interests

(irrigation, instream flow, municipal)

--Stream channel alteration and stabilization
--Invasive species
--PKD
--Timber harvest
--Forest fires
--Increasing Recreation use
--Maintenance of water quality
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Existing challenges/threats magnified by global
warming induced climate changes?

>
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Changes observed in Upper Yellowstone Watershed

Observed Water-Related Changes During the Last Century'*?

Observed Change

Direction of Change

Region Affected

One to four week earlier peak streamflow
due to earlier warming-driven snowmelt

Earlier

West and Mortheast

Proportion of precipitation falling as snow

Decreasing

West and NMortheast

Duwuration and extent of snow cover

Decreasing

Most of the United States

Mountain snow water equivalent Decreasing West

Annual precipitation Increasing Most of the United States

Annual precipitation Decreasing Southwest

Frequency of heavy precipitation events Increasing Most of the United States

Runoff and streamflow T C:nl:nradﬂ and Columbia River
Basins

Streamflow Increasing Most of East

Amount of ice in mountain glaciers Decreasing U.S. western mountains,
Alaska

Water temperature of lakes and streams Increasing Most of the United States

Ice cover on lakes and rivers Decreasing Great Lakes and Northeast

Periods of drought Increasing Parts of West and East

Salinization of surface waters Increasing Florida, Louisiana

Widespread thawing of permafrost Increasing Alaska




But walt ! How can we have declining snowpack and
streamflow with record snowpack and runoff in 2018 ??7?

New Snowfall in Billings Breaks Winter Accumulation

Record Upper Yellowstone 2018 snowpack

The mild snowfall that recently covered the Billings area has pushed this winter's total accumulation for the city past the single-season
snowfall record.

Upper Yellowstone River Basins Snowpack with Non-Exceedence Proj
Based on Provisional SNOTEL Data as of Aug 29, 2018
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Global heating puts more “energy” into climate system and
effects of global warming on snowpack and runoff will be
highly variable from year-to-year, but follow general trend

What do we know?
Future Climate = Natural Variability + Warming

Drier

Aridity

Wetter

0 50 100 0 50 100

Year Year
We tend to think of future Future climate will be a
climate change as a simple combination of human-induced
linear trend... trends and natural variability

Gray et al. (2006), Ecology 87:1124-1130



Potential Effects of global warming on Upper
Yellowstone River Streamflow

How might we expect
streamflow to change
with global warming ?

g

. Clark’s Fork
} Wyoming

z

-

- 2000-2007

Average Daily Discharge
(Cubic meter per second)
2

en
(=]
L L

-

Water Years ]
— 1950 - 1959 ]
— 1990 - 1999 ]

oE i
Feb Mar Apr

3y
May Jun Jul

Aug Sep

a) o

June 9 ——— 17—

June 9 i@y © o0 ©
May 30

May 10 |- o

April 30

L %oooo o © 00
n“&?" e 9 ﬁﬁxgo 5
May 21 |- g [+ -] ° ab -

. 9

[ — 1 1
1920 1940

11 1 L
1960

L -
1960

Water Year (October-September)

Warming and the shifting hydrograph

Consequences:
- Earlier run-off
- Faster run-off

- Diminished late-
season flow

Increased year-to-year

| variability in moisture,

temperature and runoff

Courtesy Mike Deftinger, USGS



Upper Yellowstone Surface-Water
Supply and Trends

Examined snowpack at Lick Creek NRCS SNOTEL site and streamflow
records at Corwin Springs and Livingston (Carter’s Bridge)
USGS stream gages for changes/trends in:

Snowpack—snowpack size controls runoff volumes—peak flows influenced
by snowpack size and temperature
(temperature--controls rate of melt and if it arrives as rain or snow)

Annual flow—total volume of flow moving past stream gage
(sometimes expressed a constant daily rate ( cubic-feet-second)
that would produce the same volume in 365 days);

Peak flow — the instantaneous flow that is the largest in a year.



Long-term (1250 to 2004 A.D.) reconstruction of April 1 Snow Water
Equivalent (SWE) available from tree-ring Paleo records

30 v v v L] v v b T v v v L}
| Upper Yellowstone April 1 SWE Calibration

—_ —— Observed April 1 SWE
£ 25 1 Reconstructed April 1 SWE Mean 7
-~ - —— 20-year Smoothing Spline
w 20 4 50-year Smoothing Spline
5 W
- 15 ' V\LWJ_V_W :
g
< 10 '-

5 —_ ,

1920 1940 1960 1980 2000 1930’s

=) | Upper Yellowstone April 1 SWE Reconstruction S drought
T 251 : ) longer
L
= 21 \\/\ ik A ALy Y 2000's
‘\ N A

o | gk Al \/ i drought
T shorter
< 10 T

5 . . : - . L . . . L] - . L

1200 1400 1600 1800 2000

Year AD

Source: Greg Pederson, USGS Bozeman



Recent study shows “dramatic” declines in Western Snowpack
a) April 1 Observed SWE Trends 1955-2016 o )
--90 % of snow monitoring sites show

declines;

--declining trends across all months, states,
and climates;

--averaged across western US, the average

per decline in April 1 SWE (since 1950)

ywstone is 15 to 30%.

This amounts a total of about 12,160,697
to 24,321,395 acre-feet of water across
the western U.S.
(for comparison the average
annual runoff of
Yellowstone basin near
Sidney is about
8 million acre-feet).

np) | Climate and Atmospheric Science wiww.nature.com/npjclimatsc

ARTICLE
Dramatic declines in snowpack in the western US

Philip W. Mote', Sihan Li?, Dennis P. Lettenmaier®, Mu Xiao®> and Ruth Engel3




Plot of Lick Creek maximum snow water equivalent (SWE)

over 1964 to 2017 indicates 30% decline peak amount of accumulated snow

Fit Plot for LickSWEN
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Location of Upper Yellowstone USGS Stream Gages examined
for trends in timing of runoff, annual flow, and peak flow
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Mean Daily Discharge (cfs)

Timing of runoff: is runoff starting earlier ?

(not clear without better analysis of longer record)

Figure . Mean Daily Discharge, Selected Upper Yellowstone River Basin Stations in Montana: 2010 to 2018
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Is runoff starting earlier ?

To figure that out:
For each year (1940-2016) calculate the date that
25, 50 and 75% of annual runoff occurs ?

25%--May 1 —
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50%--June 1

75%--July 1 ™
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75%--July 27

T

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Example of hydrograph shifted (left) in response to earlier snowmelt.
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Is runoff starting earlier at Corwin Springs USGS Gage ?

Figure . Day of Year that 25%, 50% and 75% of Annual Runoff Occurs: 1940 to 2016
Yellowstone River at Corwin Sprlngs Montana
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--Annual volume of runoff is important for water-supply;
--Annual Peak Flow is important for channel maintenance
(erosion and deposition)



Are peak flows increasing in size or occurring earlier at Corwin Springs USGS Gage ?

100,000 T T T T T T T T T T T

B. Yellowstone River at Corwin Springs, Montana
{station 06191500)

10,000

Annual peak flow,
in cubic feet per second

1,000

Size of peaks
— not increasing

July 15

July 1

June 1+

Day of annual peak flow

May 1 ' '

Peaks occurring

~T = = 21to 3 weeks earlier

1910 1930 1950 1970

Water year

Temporal trends and stationarity in annual peak flow and
peak-flow timing for selected long-term streamflow-gaging
stations in or near Montana through water year 2011: Chapter B
in Montana StreamStats

Scientific Investigations Report 2015-5019-B

Prepared in cooperation with the Montana Department of Transportation and Montana Department of Natural Resources and
Conservation

By: Steven K. Sando , Peter M. McCarthy , Roy Sando , and DeAnn M. Dutton



Instantaneous Peak Flow (cfs)

Pattern of peak flows shows no trend from 1880 to 2017—but does show
annual variability due to natural cycles in climate and snowpack
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Are late- -Season (base flows) flows dlmlnlshed ?

R W§\§ ;-wia e

Climatic Change (2012) 112: 997 1014 IOOS

N P UN

A /

Aam—e [ 25 to 35%
‘ i\ “ “

ChangeperRecord . .
} e Decline in
+ 201%- 15% /
S S
+ 15.01% » 24.53% H"““i
/'.
24.54% - 36% {/
'-/'r
+ 35.01% - 56% Sy
f * IDAHO
Decreasing Discharga J'l **
PercentChangerecord f"l *

/
w * A58 1% - -55 5% /
~L_

* -55.52% - -36.36% T—

+ 36.35% - 25.30%
NEVADA

'} <253T%H - -14.99%

i =14.98% - -2.08% 0 70

imatic muc(,n,)ll, 7
DOL 10.1007/510584-011-0235-1

Fig. 5 Amount and type of normalized discharge change per record across the Central Rockies. The

downward pointing red arrows signify a decreasing slope and the upward pointing blue arrows signify an  Impacts of climate change on August stream discharge
increasing slope. The Larger the arrow the larger the discharge change at each gauging station. This figure ™ ¢ Central-Rocky Mountains

. shows a decreasing trend across the study area with very few positive slopes Jason €. Leppi + Thomas H. DeLnca -

RS Solomon W. Harrar - Steven W. Running




Corwin Springs—Annual volume of runoff in sequence 1911 to 2016

Yellowstone River at Corwin Springs, MT--Historic Annual Total Discharge 1911-2016
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Tree-ring re-constructed annual runoff (Graumlich and others, 2003) for Yellowstone River
at Corwin Springs suggests no long-term trend in annual streamflow, with recent years
close to the long-term median, but highly variable.

Figure . Annual Runoff -- Yellowstone River near Corwin Springs, Montana (U.S. Geological Survey Station 06191500)
Tree-Ring Reconstructed Annual Runoff (1706 to 1977) and Measured Annual Runoff (1911-2017) by Water Year
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Flow reconstruction by Graumlich et.al. 2003 (Upper Yellowstone River flow and teleconnections with Pacfic Basin climate variability during the past three centuries(Climatic Change 59:245-262).
Annual streamflow 1706-1977 reconstructed by Graumlich et.al. (2003) using upper Yellowstone tree-ring width chronologies and extra-regional climate parameters.

Data Source: Reconstructed Annual Flow, -2 and + 2 Standard Deviation of Flow, and USGS Measured Flow = Graumlich, L.J., et.al., Upper Yellowstone River Flow Reconstruction

International Tree-Ring Data Bank. IGBP PAGES/World Data Center for Climatology, Data Contribution Series #2002-074. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.

Five and ten-year moving averages computed from retrieved data. (DNRC Water Resources Division, Helena, MT.)




Graphs of annual discharge over time suggest lack of long-term trend
or declining trend at Corwin Springs— depending on length of

Annual Discharge (cfs)
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TRENDS in STREAMFLOW and SNOWPACK—CONCLUSIONS

Global-warming induced climate change has significantly affected
Upper Yellowstone snowpack and streamflow over the past 50 years.

» Snowpack in the Upper Yellowstone Watershed has declined by about 30% since
1950 and is melting 5 to 15 days earlier.

» Runoff at Corwin Springs is starting 10 to 15 days earlier than-1940.

PNo trend in peak flows at Corwin Springs; peaks occurring 2 to 3 weeks earlier =

Plate season “base flow™ has declined 25 to 35% in Upper Yellowstone
}Annua‘i volume of water-is highly variable since 1700 and shows multi- year
“wetandhdry cycles:- existence of trend depends on time period
examined; decreasing trend of about 15% from 1975-2016
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What do these changing climate conditions mean for Upper
Yellowstone Water Uses ?

--Increasing variability in year-to-year water supply with higher highs and lower lows
(2011 or 2018 runoff could be followed by extended drought);

--Aquatic ecosystems will be more stressed by elevated water temperature

I -Increasing variability in irrigation water supply and length of growing season;
i is likely to increase;

and changes in the pattern of runoff H
--Competition for existing uses of water (for example irrigation and instream flow) —
. --Get used to smoky summers. E

Key Message: Cooperation among all water users will be increasingly important.

i A i ’

o= Framework for doing this is an effective Drought Management Plan.
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